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Abstract

The dynamic instability characteristics of stiffened plates subjected to in-plane partial and concentrated
edge loadings are studied using finite element analysis. In the structural modelling, the plate and the
stiffeners are treated as separate elements where the compatibility between these two types of elements is
maintained. The method of Hill’s infinite determinants is applied to determine the dynamic instability
regions. Numerical results are presented to study the effects of various parameters, such as static load
factor, aspect ratio, boundary conditions, stiffening scheme and load parameters on the principal instability
regions of stiffened plates using Bolotin’s method. The results show that location, size and number of
stiffeners have a significant effect on the location of the boundaries of the principal instability region.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Stiffened plates are structural components consisting of plates reinforced by a system of ribs to
enhance their load-carrying capacities. These structures are widely used in aircraft, ship, bridge,
building, and some other engineering activities. In many circumstances, these structures are
exposed to dynamic loading. Stiffened plates are often designed to withstand a considerable in-
plane load along with the transverse loads.
Two forms of buckling are usually considered. One possible mode is local buckling of the plate

between the stiffeners, provided that the plate is reinforced with rigid stiffeners. In the second
case, an overall buckling of the plate–stiffener combination. A considerably more economical
design can be obtained if we permit simultaneous local and overall buckling at about the same
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stress level. The dynamic behaviour of stiffened plates subjected to uniform and non-uniform in-
plane edge loading is of considerable importance to aerospace, mechanical and structural
engineers. A structural element subjected to in-plane periodic forces may lead to parametric
resonance, due to certain combinations of the load parameters. The instability may occur below
the critical load of the structure under compressive loads over a range or ranges of excitation
frequencies.
The Hill’s method of infinite determinants is used for solving a system of Mathieu-type

equation obtained in the present problem. The expansion of converging infinite determinants
leads to a criterion to predict the stability properties of a finite number of coupled Mathieu
equations. The dynamic instability of plates under periodic in-plane loads has been investigated
by a number of researchers. For example, the dynamic stability of rectangular plates under
various in-plane periodic forces has been studied by Bolotin [1], Jagdish [2] and Yamaki and
Nagai [3]. The parametric instability characteristics of plates subjected to uniform harmonic loads
have been studied by Hutt and Salam [4] using finite element method. Takahasi and Konishi [5]
have studied the dynamic stability of a rectangular plate subjected to a linearly distributed load
such as pure bending or a triangularly distributed load applied along the two opposite edges using
harmonic balance method. The boundary conditions of the plate consisted of combination of
simply supported edge and clamped edge. Unstable regions were presented for various boundary
conditions of the plate and the loading conditions.
Deolasi and Datta [6] have studied the dynamic stability of thin, square, isotropic plates with

simply supported boundary conditions, using finite element method where three degrees of
freedom per node have been taken. Parametric instability characteristic of rectangular plates with
localized damage subjected to in-plane periodic loading has been studied by Prabhakar and
Datta [7].
The investigations on the parametric response of stiffened plates have been sparsely treated in

the literature. Ambartsumyan and Khachaturian [8] have made the first attempt in the area of
parametric instability of stiffened plates.
The onset of parametric resonance of a rectangular plate reinforced with closely spaced

stiffeners has been studied by Duffield and Willems [9]. As stiffeners are thin-walled open
members, the torsional rigidity of the stiffeners has not been taken into account. It was shown in
their investigation that the principal regions of instability could significantly overlap for a
stiffened plate. A similar study on skew stiffened plates was carried out by Merrit and
Willems [10].
Mermertas and Belek [11] have employed the Galerkin method to investigate the dynamic

stability of radially stiffened annular plates with both edges subjected to in-plane forces. Dynamic
stability of laminated composite stiffened plates due to periodic in-plane forces at boundaries has
been investigated by Liao and Cheng [12]. In most of the available results on dynamic instability
of stiffened plates, the load has a uniform distribution over the edge. However, the applied load is
seldom uniform and the boundary condition may completely be arbitrary in practice. The
application of non-uniform loading on a structural component having general boundary
conditions will alter the global quantities such as free vibration frequency, buckling load and
dynamic instability region.
In the present study, the dynamic stability of a stiffened plate subjected to various in-plane

uniform and non-uniform, including partial and concentrated edge loadings, is investigated. The
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effects of various parameters like static and dynamic load factors, aspect ratio, boundary
conditions, percentage of loaded length and position of point loading on the instability behaviour
of stiffened plate are examined.
In the present analysis, the plate is modelled with nine-noded isoparametric quadratic element

where the contributions of bending and membrane actions are taken into account. One of the
advantages of the element is that it includes the effect of shear deformation and rotary inertia in
its formulation. Thus, the analysis can be carried out for both thin and thick plates. Moreover, it
can be applied to a structure having irregular boundaries with some modifications. The
formulation of the stiffener is done in such a manner that it may lie anywhere within a plate
element [13]. In order to maintain compatibility between the plate and the stiffener, the
interrelation functions used for the plate are used for the stiffeners also.

2. Theory and formulations

The basic configuration of the problem considered here is a stiffened plate as shown in Fig. 1,
subjected to various non-uniform harmonic in-plane edge loadings.

2.1. Governing equations

The equation of equilibrium for an elastic system undergoing small displacements at the instant
of buckling may be written in matrix form as

½M�f .qg þ ½½Ke� � P½KG��fqg ¼ 0: ð1Þ

In the above equation, the in-plane load factor PðtÞ is periodic and can be expressed in the form

PðtÞ ¼ PS þ Pt cosOt; ð2Þ

where PS is the static portion of PðtÞ, Pt is the amplitude of the dynamic portion of PðtÞ and O is
the frequency of excitation. The static buckling load Pcr may be used to express PS and Pt as

b 

c a c c a   c 

a  a  
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 b  c c  
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a a
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Fig. 1. Description of the problem, i.e., various loading cases.
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follows:

PS ¼ aPcr; Pt ¼ bPcr; ð3Þ

where a and b are static and dynamic load factors, respectively. Using Eqs. (2) and (3), the
equation of motion (1) may be expressed as

M½ � .qf g þ Ke½ � � aPcr KG½ � � bPcr KG½ �cosOt½ � qf g ¼ 0: ð4Þ

Eq. (4) represents a system of second order differential equation with periodic coefficients of
Mathieu–Hill type. The boundaries of dynamic instability are formed by the periodic solution of
period T and 2T ; where T ¼ 2p=O: The boundaries of the primary instability region with period
2T are of practical importance and the solution can be achieved in the form of trigonometric
series:

qðtÞ ¼
XN

k¼1;3;5

af gk sin
kOt

2
þ bf gk cos

kOt

2

� �
: ð5Þ

After substitution of the above equation into Eq. (4), if the first term of the series is considered
(equating coefficients of sin ðOt=2Þ and cos ðOt=2Þ), it leads to a series of algebraic equations for
the determination of instability regions. Principal instability region, which is of practical
importance, corresponds to k ¼ 1 and for this case, the instability equation leads to

½Ke� � aPcr½KG�71
2
bPcr½KG� �

O2

4
½M�

� �
qf g ¼ 0: ð6Þ

The two conditions under plus and minus signs correspond to two boundaries of the dynamic
instability region. The eigenvalues give the value of O, which are the bounding frequencies of the
instability regions for the given values of a and b:

2.2. Finite element formulation

The plate skin and the stiffeners are modelled as separate elements but the compatibility
between them is maintained. The element matrices of the stiffened plate element consist of the
contribution of the plate and that of the stiffener. The effect of in-plane deformations is taken into
account in addition to the deformations due to bending, which will help to model the stiffener
eccentricity conveniently. This is similar to the concept proposed by Sheikh and Mukhopadhyay
[14] and Mukherjee and Mukhopadhyay [13,15]. The stiffness matrix of the plate and that of the
stiffener have been discussed in detail in Refs. [13,15] where they have used eight-noded
isoparametric element and as such will be discussed here rather briefly by giving the important
expressions directly in their final form in order to avoid repetition.
The nine-noded isoparametric quadratic element with five degrees of freedom (u; v; w; yx; and

yy) per node is employed in the present analysis. The co-ordinates at a point within the element are
approximated in terms of its nodal co-ordinates [16]. The shape functions are expressed in terms
of non-dimensional parameters x and Z: In order to correlate the axis system (x2y) with (x–Z), the
Jacobian matrix Jj j and its inverse may be used [16].

A.K.L. Srivastava et al. / Journal of Sound and Vibration 262 (2003) 1171–11891174



2.2.1. Plate element formulation

The elastic stiffness matrix [KP], geometric stiffness matrix [KGP] and mass matrix [MP] of the
plate element may be expressed as follows:

½KP� ¼
Z þ1

�1

Z þ1

�1
½BP�T½DP�½BP�jJPj dx dZ; ð7Þ

½KGP� ¼
Z þ1

�1

Z þ1

�1
½BGP�T½sP�½BGP�jJPj dx dZ; ð8Þ

½MP� ¼
Z þ1

�1

Z þ1

�1
½N�T½mP�½N�jJPj dx dZ; ð9Þ

where

½BP� ¼ ½½BP�1 ½BP�2 ? ½BP�r ? ½BP�9�; ð10Þ

½BGP� ¼ ½½BGP�1 ½BGP�2 ? ½BGP�r ? ½BGP�9�; ð11Þ

and

jJPj ¼ jJj: ð12Þ

The different matrices in the above equations may be written as follows:

BGP½ �r¼

0 0
@Nr

@x
0 0

0 0
@Nr

@y
0 0

0 0 0
@Nr

@x
0

0 0 0 0
@Nr

@y

0 0 0 0
@Nr

@x

0 0 0
@Nr

@y
0

2
66666666666666666664

3
77777777777777777775

; ð13Þ
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½Bp�r ¼

qNr

qx
0 0 0 0

0
qNr

qy
0 0 0

qNr

qy

qNr

qx
0 0 0

0 0 0 �
qNr

qx
0

0 0 0 0 �
qNr

qy

0 0 0 �
qNr

qy
�
qNr

qx

0 0
qNr

qx
�Nr 0

0 0
qNr

qy
0 �Nr

2
66666666666666666666666666664

3
77777777777777777777777777775

; ð14Þ

½sP� ¼

sxt txyt 0 0 0 0

txyt syt 0 0 0 0

0 0
sxt3

12
0

txyt3

12
0

0 0 0
syt3

12
0

txyt3

12

0 0
txyt3

12
0

sxt3

12
0

0 0 0
txyt3

12
0

syt3

12

2
66666666666666664

3
77777777777777775

ð15Þ

and

½mP� ¼

rt 0 0 0 0

0 rt 0 0 0

0 0 rt 0 0

0 0 0
rt3

12
0

0 0 0 0
rt3

12

2
66666666664

3
77777777775
: ð16Þ

2.2.2. Stiffener element formulation
The elastic stiffness matrix [KS], geometric stiffness matrix [KGS] and mass matrix [MS] of a

stiffener element placed anywhere within a plate element and oriented in the direction of x may be
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expressed, in a manner similar to those of the plate element, as follows:

½KS� ¼
Z þ1

�1
½BS�T½DS�½BS�jJS j dx; ð17Þ

½KGS� ¼
Z þ1

�1
½BGS�T½sS�½BGS�jJSj dx ð18Þ

and

½MS� ¼
Z þ1

�1
½N�T½mS�½N�jJSj dx; ð19Þ

where

½BS� ¼ ½BS�1 ½BS�2 ? ½BS�r ? ½BS�9
� �

; ð20Þ

½BGS� ¼ ½½BGS�1 ½BGS�2 ? ½BGS�r ? ½BGS�9� ð21Þ

and jJS j is the Jacobian of the stiffener, which is one-half of its actual length within an element.
The different matrices in the above equations may be written as follows:

½BS�r ¼

qNr

qx
0 0 0 0

0 0 0 �
qNr

qx
0

0 0 0 0
qNr

qx

0 0
qNr

qx
�Nr 0

2
66666666664

3
77777777775
; ð22Þ

½DS� ¼

EAS EFS 0 0

EFS EIS 0 0

0 0 GTS 0

0 0 0 GAS=1:2

2
6664

3
7775; ð23Þ

½BGS� ¼
0 0

qNr

qx
0 0

0 0 0
qNr

qx
0

2
664

3
775; ð24Þ

½sS� ¼
sxAS 0

0 sxIS

" #
ð25Þ
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and

½mS� ¼ r

AS 0 0 0 0

0 AS 0 0 0

0 0 AS 0 0

0 0 0 FS 0

0 0 0 0 PS

2
6666664

3
7777775
; ð26Þ

where AS is the area, FS is the first moment of area about a reference plane, IS is the second
moment of area about the reference plane, TS is the torsional constant and PS is the polar
moment of area of the stiffener cross-section.
For the stiffeners placed in the direction of y; the formulation will be similar with appropriate

changes for the co-ordinate variables.
A computer program is developed to perform all the necessary computations. The geometric

stiffness matrix is essentially a function of the in-plane stress distribution in the element due to
applied edge loading. Since the stress field is non-uniform, for a given edge loading and boundary
conditions, the static equation, i.e., ½K �fdg ¼ fFg is solved to get these stresses. The geometric
stiffness matrix is now constructed with the known in-plane stresses. The computer program
developed accepts two sets of boundary conditions, one for the static analysis and the other for
the buckling analysis. In the present case, a three-point integration scheme is adopted for the
evaluation of all the matrices except the portion of the stiffness matrix related to shear strain
components.
The overall elastic stiffness matrix, geometric stiffness matrix and mass matrix are generated

from the assembly of those element matrices and stored in a single array where the variable
bandwidth profile storage scheme is used. The solution of eigenvalues is performed by the
simultaneous iteration technique proposed by Corr and Jennings [17].

3. Results and discussions

3.1. Convergence and validation

In a finite element analysis, it is desirable to have the convergence studies to estimate the order
of mesh size necessary for the numerical solution. For this purpose, a simply supported and
clamped rectangular plate subjected to concentrated in-plane edge loading as shown in Fig. 1(a) is
analyzed with various mesh sizes taking c=b ¼ 0:5 and aspect ratio (a=b) of 1.0, 2.0.and 0.5.
Results obtained in the form of buckling load parameters are presented in Table 1 with those of
Leissa and Ayoub [18] and Brown [19], which show good agreement. As the convergence study
shows that a mesh size of 10� 10 is sufficient enough to get a reasonable order of accuracy, the
analysis in the subsequent problems is carried out with this mesh size.
For the validation of buckling load parameter of stiffened plates subjected to partially

distributed in-plane edge loading, as shown in Fig. 1(b), the analysis is carried out for c=b ¼ 1:
Actually, this corresponds to a fully loaded plate problem, for which analytical, finite element and
other solutions are available in the literature. In the present case, the plate contains one stiffener
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as shown in Fig. 2. By varying the stiffener parameters, the plate is analyzed taking a=b ¼ 1:0
(Fig. 2) and simply supported boundary condition at the four edges. Results obtained in the
present analysis are presented with the analytical solution of Timoshenko and Gere [20] and finite
element results of Mukherjee and Mukhopadhyay [13] in Table 2. It shows that the agreement
between the results obtained from different sources is very good.

Table 1

Convergence and comparison of buckling load parameter (l ¼ Pcrb=D) of a simply supported rectangular plate under

concentrated edge loading (Fig. 1)

c=b Boundary condition a=b Buckling load parameter (l)

Present Leissa [18] Brown[19]

4� 4 6� 6 8� 8 10� 10 12� 12

0.5 SSSS 1 26.84 26.81 26.76 26.62 26.61 25.81 25.44

2 29.78 29.56 29.45 29.30 29.31 28.52 28.27

0.5 31.23 31.17 31.15 31.06 30.06 30.06 29.53

CCCC 1 66.13 66.21 66.56 66.66 66.70 — 67.23

2 63.23 63.34 63.71 63.79 63.81 — 65.03

0.5 80.78 80.56 81.23 81.04 81.12 — 82.30

t 

b 
 b   1 in  

ds

a 

 bs

 A 

 A 

Section A A 

Fig. 2. Stiffened plate cross-section

Table 2

Validation of buckling load parameter of a simply supported stiffened plates under distributed in-plane edge loading

(c=b ¼ 1)

Buckling load parameter (l)

AS=bt EIS=bD

5 10 15

Ref. [13] Present Ref. [13] Present Ref. [20] Present

0.05 12.0 12.62 16.0 15.99 16.0 15.998

0.1 11.10 12.39 16.0 15.99 16.0 15.995
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For the validation of dynamic instability, a similar approach may be adopted, i.e., the value of
c=b may be taken as 1.0 for a uniformly distributed partial in-plane edge loading. In this case, a
simply supported square plate is analyzed with different static and dynamic load factors. The
boundary frequencies obtained in the present analysis are presented with those of Hutt and Salam
[4] in Table 3, which show good agreement.

3.2. In-plane stress distribution under non-uniform loading

Plates subjected to non-uniform in-plane loading may develop non-uniform stress distribution
which may considerably influence the stability behaviour of the plates. Hence, it is customary to
study the nature of in-plane stress distribution under non-uniform loading, prior to subsequent
analysis. Figs. 3 and 4 show the non-dimensional in-plane stresses sxat=P and syat=P for a square
plate subjected to a pair of concentrated edge loading on two opposite edges at various locations.
It can be observed from Fig. 3 that for concentrated compressive loading at the ends of two
opposite edges, a substantial compressive zones exists over some localized area which lies near the
line of action of the forces, i.e., near the edge x ¼ 0: In compressive zones, the stresses are
predominantly in the direction of loading. When the compressive loading is shifted to the centre of
the edges, the compressive zones is spread over almost entire plate area, but the stresses are
considerably higher in a zone near to the centre of the plate as shown in Fig. 4. Again, the in-plane
stress distribution and the influence of edge restraints in the substantial compressive zones play a
role in the observed buckling behaviour. Thus, the dynamic stability behaviour of the plates under
concentrated and patch types of loading would be of considerable interest.

3.3. Effect of different parameters on dynamic instability of stiffened plates

The effect of different parameters on dynamic instability region of stiffened plates is studied in
this section. It includes the location and the extent of edge loading, static and dynamic load
factors, plate aspect ratio, boundary conditions, number of stiffeners, location of the stiffeners,
and stiffener geometric parameters. The study is made for different types of edge loading as shown
in Fig. 1. Results are presented in graphical form where the instability region is shown by the

Table 3

Comparison of principal regions of instability of a simply supported square plate subjected to uniform in-plane edge

loading (uni-axial) for different static load factors (a)

Excitation frequency parameter

a¼ 0 a¼ 0:6

b Present Ref. [4] b Present Ref. [4]

U L U L U L U L

0 39.46 39.46 39.46 39.46 0 25.04 25.04 25.06 25.06

0.4 43.16 35.37 43.00 35.32 0.16 27.41 22.48 27.43 22.49

0.8 46.54 30.73 46.56 30.78 0.32 29.58 19.51 29.60 19.53

1.2 49.54 24.02 49.52 25.06 0.48 31.55 15.89 31.57 15.91
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upper and lower values of the non-dimensional excitation frequency parameter (O ¼ %Oa2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
).

In all these cases, the frequency parameter is plotted against dynamic load factor (b) for different
values of the parameters as mentioned above.

Fig. 4. Non-dimensional in-plane stress distributions under a pair of concentrated loading at the centre of two opposite

edges.

Fig. 3. Non-dimensional in-plane stress distributions under a pair of concentrated loading at one end of two opposite

edges.
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3.3.1. Concentrated edge loading

The case of concentrated edge loading as shown in Fig. 1(a) is considered in this section.
As a first case, the effect of position of the concentrated load on the region of dynamic

instability of the stiffened plate is studied by taking different values of c=b ratio. The plate is
simply supported at its four edges and the data used for its geometry are a ¼ 600mm,
b ¼ 600mm, t ¼ 6:33mm, bs ¼ 12:7 and ds ¼ 22:2mm. Taking a static load factor (a) of 0.2, the
plate is analyzed and the results obtained are presented in Fig. 5. The figure shows that the
instability region and its width depend on the position of the concentrated load. It is observed that
the width of instability regions is reduced with decrease in value of c/b ratio. Again it is found that
the instability occurs at higher excitation frequencies when the load is closer to the support. These
effects are due to the restraint imposed by the edge support. In this study, the dynamic load factor
(b) is varied from 0 to 0.8. In the higher range of b (X0.4), the upper excitation frequency
parameter for higher c=b ratio is interestingly found to be comparable with that corresponding to
lower c=b ratio. For lower values of b; the pattern is just opposite. This behaviour of stiffened
plate is distinctly different from that of corresponding unstiffened plate results available in the
literature [6]. In the case of the stiffened plate problem considered here, the change of pattern in
the range of higher dynamic load factor (b) is due to the restraint imposed by the stiffener.
The effect of static load factor (a) on the dynamic instability region of the stiffened plate

considered above is studied for load position, c=b ¼ 0:2 in all the cases. Results for a ¼ 0:2; 0.4,
0.6, and 0.8 are presented in Fig. 6. It shows that the instability region is shifted to lower
frequencies and becomes wider with the increase of static load factor (a).
In order to study the effect of aspect ratio (a=b) of a stiffened plate on its dynamic instability

behaviour, the length (a) of the stiffened plate considered above is varied keeping the other
parameters unchanged. The analysis is carried out taking c=b ¼ 0:2 and a ¼ 0:2 in all the cases.
The investigation is made for a=b ¼ 0:5; 1.0, 1.5 and 2.0, which is shown in Fig. 7. It is observed
that the onset of dynamic instability occurs at higher frequencies for higher aspect ratios (a=b).
The instability region is also found to be broader with the increase in aspect ratio (a=b).
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Fig. 5. Effect of position of load on instability region of simply supported stiffened plate subjected to in-plane

concentrated load a ¼ 0:2:
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The effect of boundary conditions (SSSS, CCCC, SCSC) on the dynamic instability regions of
unstiffened and stiffened plates are shown in Fig. 8 taking c=b ¼ 0:2 and a ¼ 0:2 for the loading
condition (Fig. 1(a)). It is observed that the excitation frequency of the plate reinforced with
stiffener is more than that without stiffener for all edge conditions. It is also observed that the
instability occurs at a higher excitation frequency for clamped edge condition than simply
supported, which is due to the restraint at the edges. The width of the instability region also
decreases with the increase of restraint at the edges for both unstiffened and stiffened plates.
The effect of varying number of stiffeners on the principal dynamic instability regions of the

stiffened plate subjected to in-plane concentrated load is shown in Fig. 9. The analysis is done for
one central stiffener, two equispaced stiffeners and three-equispaced stiffeners parallel to x-axis.
Plate and stiffener dimensions are the same as before. Further, each stiffener cross-section is
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Fig. 6. Effect of static load factor on instability region of simply supported stiffened plate subjected to in-plane

concentrated load (c=b ¼ 0:2).
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Fig. 7. Effect of aspect ratio on instability region of simply supported stiffened plate subjected to in-plane concentrated

load (c=b ¼ 0:2; a ¼ 0:2).
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similar. It is observed from Fig. 9 that the value of the boundary frequency parameter increases as
the number of stiffener increases.

3.3.2. Partial edge loading at one end
The case of partial edge loading at one end as shown in Fig. 1(b) is considered in this section.
The effect of load bandwidth (Fig. 1(b)) on the region of dynamic instability of the stiffened

plate is studied. The plate is simply supported at its four edges and the data used for its geometry
are the same as in the earlier case. Taking static load factor (a) of 0.2 and different values of c/b
ratio (c=b ¼ 0:1; 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0), the plate is analyzed and the results obtained are
presented in Fig. 10. The figure shows that the instability region and its width depend on the
positions of the partial edge load at one end. It is observed that for small value of c=b (0:2), the
widths of the dynamic instability regions are usually smaller in comparison to those for c=b close
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to unity (c=b ¼ 0:8). This is because of the fact that the restraint of the edge has a stabilizing effect
on the dynamic instability behaviour of the stiffened plate for small bandwidth of loading. It is
also observed that, the instability occurs at lower excitation frequencies with the increase of
distance from the edges (c=b). In this study, the dynamic load factor (b) is varied from 0 to 0.8. It
is observed that the nature of upper excitation frequency parameter with c=b ratio is similar to
that of concentrated loading case. In the case of the stiffened plate problem considered here, the
change of pattern in the range of higher dynamic load factor (b) is due to the presence of stiffener
at the centre. The effect of static load factor, boundary condition, aspect ratios and varying
number of stiffeners on the instability regions are studied and it has been observed that the results
are similar to those of in-plane concentrated load case discussed earlier.

3.3.3. Partial edge loading at both ends
The case of partial edge loading at both ends as shown in Fig. 1(c) is considered in this section.
The effect of load bandwidth (c=b ¼ 0:2; 0.4, 0.6, 0.8, 1.0) on instability region of simply

supported square plate with one central stiffener is studied. The non-dimensionalized static part of
the in-plane force, a; is 0.2 and the results obtained are presented in Fig. 11. It is observed that the
instability region and its width depend on the positions of load bandwidth. It may be observed
from Fig. 11 that for small value of c=b (0:2), the widths of the instability zones are smaller as
compared to those for c=b close to unity (c=b ¼ 0:8). This means that the plate is less susceptible
to dynamic instability for band loading near the edges. This is because of the edge restraining
effects.
Again it is observed that the nature of upper excitation frequency parameter with c=b ratio is

similar to that of previous loading cases.

Fig. 10. Effect of load bandwidth on instability region of simply supported stiffened plate subjected to in-plane partial

loading at one end (a ¼ 0:2).
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3.3.4. Partial edge loading at the centre

The case of partial edge loading at the centre as shown in Fig. 1(d) is considered in this section.
The effects of static load factor, boundary condition, aspect ratios and varying number of
stiffeners on the instability regions are studied. It is observed that the results obtained are similar
to those of other loading cases.
The stiffener parameter terms d and g are defined as d ¼ AS=bt =ratio of cross-sectional area of

the stiffener to the plate area, where AS is the area of the stiffener and g ¼ EIS=bD ¼ratio of
bending stiffness rigidity of stiffener to that of the plate, where IS is the moment of inertia of the
stiffener cross-section about reference axis.
The effects of stiffener area ratio and bending stiffness rigidity ratio of stiffener on the dynamic

stability of stiffened plate are of interest.
A simply supported square plate with a central stiffener has been analyzed with various

rigidities of the stiffener. The ratio of the bending stiffness (EIs/bD) has been varied from 5 to 20.
The torsional inertia of the stiffeners has been neglected. The effect of bending stiffness rigidity of
the stiffened plate with one central stiffener, having fixed stiffener area ratio (say d ¼ 0:1), on the
principal dynamic stability region is shown in Fig. 12. It is observed that if d is fixed and g is
increased, the instability boundary frequencies, O; increase with moderate increase of the width of
the instability zones. The same effects are observed for other in-plane edge loading cases also. The
results in Fig. 12 can be explained by the fact that d and g are proportional to the cross-sectional
area and the cross-sectional moment of inertia of the stiffener, respectively. Therefore, as g
increases, the rigidity of the stiffened plate increases and the plate becomes more stable.
A simply supported square plate with a central stiffener has also been analyzed with various

ratios of cross-sectional area of the stiffener to that of the plate (d ¼ 0:05; 0.1, 0.15, 0.2, 0.25)
keeping fixed bending stiffness rigidity (g ¼ 10). The torsional inertia of the stiffeners has been
neglected. The effects of stiffener area ratios of the stiffened plate on the principal dynamic
stability region are studied and the results obtained are presented in Fig. 13. It is observed that the
onset of instability appears earlier as d is increased for a fixed value of g: However, the width of
instability regions remains unaffected.
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4. Conclusion

The results from a study of the instability behaviour of stiffened plates subjected to non-
uniform periodic in-plane compressive edge loading can be summarized as follows:

1. The instability regions are shifted to lower frequencies and become wider with the increase of
static load factor showing a destabilizing effect on the dynamic stability behaviour of the
stiffened plate.

0.0 0.2 0.4 0.6 0.8

50

60

70

80

90

N
on

-d
im

en
si

on
al

 e
xc

ita
tio

n 
fr

eq
ue

nc
y 

Ω

Dynamic load factor ( β )

 γ = 0.05
 γ = 0.1
 γ = 0.15
 γ = 0.20
 γ = 0.25

1.0

Fig. 13. Effect of d on instability region of simply supported stiffened plate (g ¼ 10) subjected to partial edge loading at

centre (a ¼ 0:2; c=b ¼ 0:2).

0.0 0.2 0.4 0.6 0.8 1.0
40

50

60

70

80

90

100

110

N
o
n
-d

im
e
n
s
io

n
a
l 
e
x
c
it
a
ti
o
n
 f

re
q

u
e
n
c
y

Ω

Dynamic load factor (β)

γ = 5
γ = 10
γ = 15
γ = 20

Fig. 12. Effect of g on instability region of simply supported stiffened plate (d ¼ 0:1) subjected to partial edge loading

at centre (a ¼ 0:2; c=b ¼ 0:2).

A.K.L. Srivastava et al. / Journal of Sound and Vibration 262 (2003) 1171–1189 1187



2. The width of instability zones is reduced with the decrease in the value of c=b ratio for all
loading cases. However, in higher range of b (X0.4), the upper excitation frequency parameter
of higher c/b ratio is found to be more compared to that corresponding to lower c/b ratio.

3. The onset of dynamic instability occurs at higher frequency for higher aspect ratio with wider
instability regions.

4. If the cross-sectional dimensions of the stiffeners are the same, then the plate with more
stiffeners has a smaller principal dynamic instability region.

5. The onset of instability occurs later with the addition of restraint at the edges.
6. The instability boundary frequencies, O; increase with moderate increase of the width of the
instability zones when bending stiffness rigidity of the stiffener is increased for a fixed value of
stiffener cross-sectional area. However, the result is reversed when ratio of stiffener cross-
sectional area is increased for a fixed value of bending stiffness rigidity of the stiffener.

Appendix A. Nomenclature

a plate dimension in longitudinal direction
b plate dimension in the transverse direction
c distance of concentrated load from bottom edge along y direction and also width of

partial load (Fig. 1)
t plate thickness
E; G Young’s and shear moduli for the plate material
u the Poisson ratio
bS; dS web thickness and depth of an x-stiffener
x; Z non-dimensional element co-ordinate
AS cross-sectional area of the stiffener
IS moment of inertia of the stiffener cross-section about reference axis
qr vector of nodal displacement at rth node
[DP] rigidity matrix of plate
[DS] rigidity matrix of stiffener
[Ke] elastic stiffness matrix of plate
[KS] elastic stiffness matrix of stiffener
[MP], [MS] consistent mass matrix of plate, stiffener
[KG] geometric stiffness matrix
[N]r matrix of a shape function of a node r
Pcr critical buckling load
PðtÞ in-plane load
PS static portion of P

Pt amplitude of dynamic portion of P
a static load factor
b dynamic load factor
O frequency of forcing function
U upper excitation frequency parameter
L lower excitation frequency parameter
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